Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.

نویسندگان

  • Philipp Rosenbaum
  • Anne Wosnitza
  • Ansgar Büschges
  • Matthias Gruhn
چکیده

Understanding how animals control locomotion in different behaviors requires understanding both the kinematics of leg movements and the neural activity underlying these movements. Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle activity in these behaviors is a first step toward understanding the neuronal basis for these differences. We report here the phasing of EMG activities and latencies of first spikes relative to precise electrical measurements of middle leg tarsus touchdown and liftoff of three pairs (protractor/retractor coxae, levator/depressor trochanteris, extensor/flexor tibiae) of stick insect middle leg antagonistic muscles that play central roles in generating leg movements during forward and backward straight walking. Forward walking stance phase muscle (depressor, flexor, and retractor) activities were tightly coupled to touchdown, beginning on average 93 ms prior to and 9 and 35 ms after touchdown, respectively. Forward walking swing phase muscle (levator, extensor, and protractor) activities were less tightly coupled to liftoff, beginning on average 100, 67, and 37 ms before liftoff, respectively. In backward walking the protractor/retractor muscles reversed their phasing compared with forward walking, with the retractor being active during swing and the protractor during stance. Comparison of intact animal and reduced two- and one-middle-leg preparations during forward straight walking showed only small alterations in overall EMG activity but changes in first spike latencies in most muscles. Changing body height, most likely due to changes in leg joint loading, altered the intensity, but not the timing, of depressor muscle activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.

A key element of walking is the coordinated interplay of multiple limbs to achieve a stable locomotor pattern that is adapted to the environment. We investigated intersegmental coordination of walking in the stick insect, Carausius morosus by examining the influence a single stepping leg has on the motoneural activity of the other hemiganglia, and whether this influence changes with the walking...

متن کامل

Intersegmental coordination: The Influence of a Single Walking Leg on the Neighbouring Segments in the Stick Insect Walking System

A key element of walking is the coordinated interplay of multiple limbs to achieve a stable locomotor pattern that is adapted to the environment. We investigated intersegmental coordination of walking in the stick insect, Carausius morosus by examining the influence a single stepping leg has on the motoneural activity of the other hemiganglia, and whether this influence changes with the walking...

متن کامل

Activity patterns and timing of muscle activity in the forward walking and 4 backward walking stick insect

34 Understanding how animals control locomotion in different behaviors requires understanding 35 both the kinematics of leg movements and the neural activity underlying these movements. 36 Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle 37 activity in these behaviors is a first step towards understanding the neuronal basis for these 38 differences. 39 4...

متن کامل

Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning.

In many animals, the effects of sensory feedback on motor output change during locomotion. These changes can occur as reflex reversals in which sense organs that activate muscles to counter perturbations in posture control instead reinforce movements in walking. The mechanisms underlying these changes are only partially understood. As such, it is unclear whether reflex reversals are modulated w...

متن کامل

Body side-specific control of motor activity during turning in a walking animal

Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2010